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A VARIATIONAL PRINCIPLE FOR MAGNITOHYDRODYNAMIC CHANNEL FLOW 

by Norman C. Wenger 

Lewis Research Center  

SUMMARY 

A variational formulation is presented for  a c lass  of magnetohydrodynamic (MHD) 
channel flow problems. This  formulation yields solutions for  the fluid velocity and the 
induced electr ic  potential in a channel with a uniform t ransverse  static magnetic field. 
The channel c ros s  section is constant but a rb i t ra ry ,  and the channel walls can be either 
insulators o r  conductors with finite electrical conductivity. Electr ic  currents  are per- 
mitted to enter and leave the channel walls so that the solutions are suitable for  MHD 
generator and pump applications. An example of a square channel with conducting walls 
is solved as an  illustration. 

INTRODUCTION 

The study of magnetohydrodynamic (MHD) channel flow has  received considerable 
attention in the past decade. 
tions; the MHD generator,  the MHD pump, and the electromagnetic flowmeter. 

nitely long channel of constant c r o s s  section with a uniform stat ic  magnetic field applied 
t ransverse  to the axis of the channel. 
conductors, o r  a combination of insulators and conductors depending on the intended ap- 
plication. 

For example, i n  the MHD generator and pump cases ,  the channel c ros s  section is 
normally rectangular with insulated walls perpendicular to the magnetic field and con- 
ducting walls parallel to the magnetic field. For the electromagnetic flowmeter case,  
the channel c ros s  section is normally circular  with conducting walls. 

In o rde r  to ca r ry  out a n  analytical solution for  MHD channel flow, it is generally 
necessary to make simplifying assumptions such as requiring the channel walls to be 
either perfect conductors o r  perfect insulators or requiring the channel walls to be very 
thin. These and other simplifications often greatly l imit  the usefulness of the results.  

This  interest-has  been motivated by three principle applica- 

The general model that is normally considered in these studies consists of an infi- 

The walls of the channel are either insulators,  



This  is particularly t rue  fo r  the electromagnetic flowmeter case since the thin wall ap- 
proximation is often not valid f o r  liquid metal applications and the wall. conductivity is 
neither zero  nor  infinite. In addition, many analytical solutions give resul ts  in the form 
of infinite series which converge poorly f o r  the l a rge  values of the static magnetic field 
that are encountered in practice.  

To alleviate some of these difficulties, Tani (ref. 1) developed a variational formu- 
lation f o r  the solution of MHD channel flow problems. His  formulation gives solutions 
for  the velocity profile and the induced magnetic field distribution in the channel fo r  a n  
a rb i t ra ry  channel c r o s s  section. It requires,  however, that the channel walls be either 
perfect conductors o r  insulators and that the admissible functions for  the velocity and 
induced magnetic field satisfy appropriate boundary conditions. 

In this  report ,  a variational formulation is presented that gives solutions f o r  the 
velocity profile and the electr ic  potential distribution in a chanhel of a rb i t ra ry  c ros s  sec- 
tion. It also gives solutions for  the electr ic  potential distribution in the channel walls. 
The walls of the channel can be a combination of insulators  and conductors but the con- 
ductors may have a finite conductivity. In addition, the admissible functions f o r  the 
velocity and potential need not satisfy any prescr ibed boundary conditions. Moreover, 
the formulation is sufficiently general  to allow electr ic  currents  to enter and leave the 
channel walls so  that the solutions obtained are suitable f o r  the MHD generator and pump 
applications. 

The report  concludes with an example that consists of a square channel with conduct- 
ing walls of finite conductivity. 

THE MODEL 

A c ross  section of a generalized channel is shown in figure 1. It consists of the 
fluid duct Sf bounded by the conducting walls Sc and the insulated walls Si. The con- 
tours  Cf and Cfi denote the fluid- conducting wall interface and the fluid-insulated wall 
interface, respectively. The contour Cco denotes the outer edge of the conducting wall. 
The vector 6 is the unit normal to the contours with the positive direction as shown. 

The applied s ta t ic  magnetic field Bo is parallel  to the x-axis and is uniform with 
respect to y and z. The applied o r  generated current  density at the outer edge of the 
conducting wall Ja is considered positive when directed outward. It is assumed that the 
net current  entering the channel c ros s  section due to Ja is zero,  so that the two- 
dimensional features  of the model a r e  retained. 
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Figure 1. - Cross section of generalized channel. 

BASIC EQUATIONS 

The basic equations to be used a r e  the standard MHD equations for  steady-state 
conditions which consist of Maxwell's equations, the momentum transport  equation, and 
the generalized Ohm's law. These a r e  

- -  
Vx.E = 0 

V X B =  p0J  

- 4 -  

J = cf(E + V X B) 

- - -  
where E ,  B, J, and po are the electr ic  field intensity, magnetic flux density, electric 
current  density, and magnetic permeability of f r ee  space, respectively; and V,  p,  77, 
of, and p a r e  the fluid velocity, density, viscosity, electrical  conductivity, and pres-  
sure ,  respectively. 

incompressible, the magnetic permeability of the fluid is the s a m e  as that of f r ee  space, 

+ 

Equations (la) to ( l e )  are based on the assumptions that the fluid is homogeneous and 

3 

L 



the electr ic  charge density and Hall cur ren t  are negligible, and the flu.id flow is laminar.  
It may be argued that the last assumption of nonturbulent flow greatly l imi t s  the useful- 
nes s  of the results s ince many flows in  pract ice  are turbulent. However, it has  been 
found experimentally (ref. 2) that the onset of turbulence occurs  at a much higher 
Reynolds number in  MHD flow than fo r  ordinary flow due to  the suppression of turbulence 
by the s ta t ic  magnetic field. 

The five basic  equations (la) to (le) can be combined to give two coupled equations of 
second order .  First, an electr ic  potential U which satisfies equation (la) identically 
can be defined as 

+ 

Next, substituting J from equation ( le) into ( lb) and then taking the divergence of equa- 
tion (lb) give 

where equation 
by substituting 
giving 

- 
(2a) has  been used to eliminate E. The second equation can be obtained 
J‘ f rom equation ( l e )  into ( Id)  and then eliminating E using equation (2a) 

2- + 
p(G . V)V = - v p  - Of[VU x 2j - (V x 6) x ii] + 7” v 

Due to the uniformity of the channel c ros s  section and the applied magnetic field with 
respect to the z-axis, all quantities in the basic  equations are independent of z except fo r  
the pressure  which is l inear  in z (ref. 3) .  In addition, it can be shown that the fluid ve- 
locity V has  only a z-component Vz and that E and J have only x- and y-components 
(ref.  4). Furthermore,  the total magnetic field 
x-direction and an induced field Bi in the z-direction. 

equation (2c) vanishes. 
of equation (2c) along with equation (2b) give the following governing equations: 

+ --t 

consists of the applied field Bo in the 

Since the velocity does not vary with z and has  only a z-component, the first t e rm in 
Expanding the vector c ros s  products and taking the z-component 

- a2u + - -  a2u - 0  2 .Bo ay - 
ax ay2 
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These equations apply, of course,  only in the fluid duct region Sf. In the conducting wall 
region Sc, equation (3a) applies with V, = 0. In the insulated wall region Si, equa- 
tion (3a) also applies with V, = 0 but it need not be solved. 

other than the velocity and electr ic  potential can be selected for  retention. 
f o r  example, eliminated the electr ic  potential but retained the velocity and the induced 
magnetic field yielding a different but equivalent set of governing equations. 

to determine the solution uniquely. 

Equations (3a) and (3b) are not unique governing equations in the sense that variables 
Tani (ref. l), 

In addition to the basic equations, appropriate boundary conditions must be specified 
These conditions are 

v,I = 0 
f 

on Cfc and Cfi 

u I I  - u  = o  On cfc (4b) 
f w  

On cfc UfVU - n l -  UWVU - n̂  I = 0 
f W 

on Cfi 
f 

On cco owVU I + Ja = 0 
W 

where I and I re fer  to evaluating the quantity on the fluid o r  wa l l  side of the contour, 

respectively . f W 

The boundary condition equations (4a) to (4e) require  the following: 
(1) The fluid velocity must vanish on the fluid-wall interfaces Cfc and Cfi. 
(2) The electric potential must be continuous ac ross  the fluid-conducting wall inter- 

face  Cfc. 
(3) The component of the electr ic  current  normal to the fluid-conducting wall inter-  

face Cfc must be continuous. 
(4) The component of the electric current  normal to the fluid-insulated wall inter-  

face Cfi must vanish. 
(5) The component of the electric current normal to  the outer edge of the conducting 

wall Cco must equal the applied o r  generated current  Ja. 
In solving the equations, it is convenient to work with dimensionless quantities. 

can easily be accomplished by defining L and Vo to be a characterist ic length and 
This  
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characterist ic velocity of the channel. Le t  

X x=- ,y=sT  z = z  dimensionless coordinates 
L L '  L 

W =  U dimensionless potential 
BoLVo 

V 
v = -  'Z dimensionless velocity 

vO 

M = BoL {$ Hartmann number 

Ja 

BoVoow 
J =  

0 

(3 
W y = -  

Of 

dimensionless p re s su re  gradient (5e) 

dimensionless applied o r  generated current (5f) 

ratio of wall-to-fluid conductivity (5g) 

Combining equations (5a) to (5g) with equations (3a) and (3b) yields the following set of 
equations in dimensionless form: 

6 

on Sf 2 a w  2 2 2 
- _ _  a ' + P  + M  - - M V = O  

ax2 ay2 ay 0 

& +-= a %  0 on Sc 
ax2 ay2 

I 1 1 1  I I I I I I ~ I I  



Likewise, combining equations (5a) to (5g) with equations (4a) to (4e) gives the following 
set of dimensionless boundary condition equations: 

on Cfc and Cfi 
f 

W I - W J  = o  On cfc 
f W 

1 on Cfi 

The unit normal vector has  been replaced by  

-- d Y a :  + a :  
A a x  Y 
n =  

where sx and 5 
sign of the square root must be selected so that the positive direction for  < is as shown 
in figure 1. 

are the unit vectors in the X- and Y-directions, respectively. The 
Y 

VARIATIONAL EX PRESSION 

The goal of this section is to construct a functional of the dependent variables V 
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and W so  that the associated Euler-Lagrange equations are the basic  governing equations 
(sa) to (6c) and where the corresponding natural  boundary conditions are the prescribed 
boundary condition equations (6d) to (6h). This  construction is performed by summing 
t e r m s  that are obtained by multiplying each governing equation and boundary condition 
equation by a suitable function and then integrating over  the corresponding area o r  contour 
where the equation is valid. 

Le t  6V and 6W be arb i t ra ry  functions of X and Y that are continuous with piece- 
wise continuous first derivatives. The integrals 

I l ~ 2 / ~ + ~ + P o + M  2 2aw - - M V  ay 2 1  6VdXdY 
ay2 

Sf 

I2 2 M 2 / [ 5  +$ - g ] 6 W  dX dY 

sf 

I3 2yM2/ [2 + 51 6W dX dY 

sC 

6W 

f 
I 
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f 

[ V I ( -  dY - - 
ax ay 

These integrals vanish since the quantities in brackets  are zero by virtue of the boundary 
condition equations (6d) to (6h). 

The symbol 6 can be defined as the variation operator so that the functions 6V 
and 6W can be considered as the variation of V and W, respectively. In addition, the 
6 operator commutes with a/aX and a/aY since X and Y are independent variables. 
Using these properties along with Green’s lemma,  the integrals I1 to I7 can be inte- 
grated by pa r t s  and combined to give 

7 
I n =  6 F  

n= 1 

where 

+ dY + 

Jcco  W 

Since each In (n=1, . . . , 7) is identically zero,  the variation of the functional F is 
zero. Thus, F is stationary; that  is, first order  changes in V and W about their  t rue  
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values produce only second order  changes in F. 
Another way of stating this  resul t  is that of all functions that are.  continuous with 

piecewise continuous first derivatives, the particular pa i r  of functions for  V and W 
that make F stationary, satisfy both the basic equations (sa) to (6c) and the boundary 
condition equations (6d) to (6h) and, hence, a r e  the desired solutions. 

Even though F was shown to be stationary, it does not necessarily m,ean that F 
has  a maximum o r  minimum at the t rue  solution for  V and W. F o r  example, as V 
and W a r e  varied from the i r  t rue  values, F may always increase,  always decrease,  o r  
either increase o r  decrease depending on how V and W a r e  varied. To determine 
which case corresponds to the F under consideration the quantity F (V + bV, W + 6W) - 
F(V,  W) is computed giving 

F ( V +  6V, W + 6W) - F(V,W)  = 2 j { [ $ + $ + P  0 - M  2 V + M  

” 
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A careful examination of equation (9) reveals  that the first six integrals vanish be- 
cause the quantities in brackets  [ ] are identically zero.  The remaining integrals are of 
second order  in 6V and 6W. This  resul t  is not surpr is ing since F was  constructed so 
that all first order  t e r m s  in  6V and 6W vanished. Of the three  remaining integrals in 
equation (9), two a r e  negative definite and the last can be of either sign. Thus, F has  
neither a minimum nor maximum at the t rue  values f o r  V and W. However, i f  the c lass  
of admissible functions for  V and W is restr ic ted so that the last integral must vanish, 
then F corresponds to a maximum at the t rue  values for  V and W since then 
F(V + 6V, W + 6W) - F(V,W) I 0. 

A study of the last integral in  equation (9) reveals  that the proper restriction to im- 
pose is that V must vanish on the contours Cfc and Cfi. An alternate choice which 
also makes the last integral vanish is to specify aV/an on Cfc and Cfi. Th i s  choice is 
useless ,  however, since it would require  solving the problem another way first to deter-  
mine the correct  value fo r  aV/an. 

Requiring V to vanish on Cfc and Cfi may provide a grea t  simplification in many 
problems in obtaining approximate values for  V and W since finding a maximum for  F 
is often much easier  than finding a stationary point. Moreover, requiring V to vanish on 
Cfc and Cfi completely eliminates one integral in the expression fo r  F given by equa- 
tion (8b). 

Before a solution for  V and W can be determined, values for  Po and Jo must be 
specified. The dimensionless p re s su re  gradient Po must  be a constant as previously 
noted. The dimensionless current  density Jo, however, can be specified as a function of 
the coordinates along the contour Cco. 
equations a r e  l inear in V,  W ,  Po, and Jo, solutions fo r  V and W can be obtained by 
superimposing solutions fo r  Po # 0 and Jo = 0 with those for  Po = 0 and Jo # 0, 

To complete the study of the variational expression, it is desirable to determine i t s  
physical significance. 

Since the basic equations and boundary condition 

PHYSICAL S IGNlFl CANCE OF VARIATIONAL EX PRESS ION 

Consider the power o r  energy balance that exists in MHD channel flow. The power 
pe r  unit length that is supplied to the fluid by the pressure  gradient P is given by 

AP 

J. I 

If this  quantity is negative, it simply means that the channel is acting as a pump. 
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The dissipative t e r m s  consist of the viscous lo s ses  in the fluid Pn, the ohmic lo s ses  
in the fluid P and the ohmic lo s ses  in  the conducting walls P ; Expressing each of 

Of' OW 
these in  t e r m s b f  the power dissipated pe r  unit length along the channel gives 

P cf =Of /  

sf 

ax 

= . v : q  

sf 

P Ow =q W 

sC 

dX dY 

dX dY 

f 

Equation (lob) reveals  that the viscous lo s ses  in the fluid can be split into two par ts ;  
the volume losses  P and the surface losses  P where 

VV 7 s  
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The surface lo s ses  are zero when the boundary condition is imposed that requires  V to 
vanish on Cfc and Cfi. 

The remaining t e r m  to be considered is the l o s s  due to the current  Ja. Since Ja is 
positive by definition when it is directed outward, the power that is supplied to an ex- 
ternal  load per  unit length of the channel P is given by 

Ja 

If PJ is negative, it simply indicates that power is being supplied by an external source. 
a 

Since power is conserved, the power balance for  the channel can be expressed as 

Comparing the expression for  the functional F given by equation (8b) with the various 
power dissipation t e r m s  given by equations (loa) to (iOg) reveals  that F can be ex- 
pressed as 

2 
AP - p  rlv - p  Of - p  Ow - 2 p %  - 2pJa qVoF = 2P 

A word of caution is in o rde r  at this  point. The expression for  F given by equa- 
tion (8b) is defined and valid fo r  an a rb i t ra ry  choice for  V and W. Likewise, the power 

etc., given by equations (loa) to (log) are valid fo r  arbi- dissipation t e rms  P 

t r a ry  values f o r  V and W. Thus, equation (12) is valid, in general. However, equa- 
7,’ 
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tion (11) which is the power balance f o r  the channel is only valid for  the cor rec t  solutions 
fo r  V and W. 

A s  shown in the previous section, the stationary point for  F corresponds to the t rue  
solutions f o r  V and W. For these values only, equations (11) and (12) can be combined 
to give 

F =  st 
'Ap - 'Ja 

where it has  been recognized that P vanishes for  the t rue  V. Thus, the stationary 

value of F is proportional to the difference between the power supplied to the fluid by 
the p re s su re  gradient and the electrical  power delivered to an external load. 

q S  

An important special case  occurs  fo r  Ja = 0 which yields 

Fst= f PoVdX dY 

sf 

where P has  been replaced using equation (loa). Since the dimensionless p re s su re  
gradient Po is a constant, the stationary value fo r  F is proportional to the average 
fluid velocity in the channel. 
which is often the main quantity of interest ,  is proportional to a stationary quantity which 
can be computed to good accuracy. 

If the boundary condition V = 0 on Cfc and Cfi is satisfied by all admissible 
functions, F has  a maximum at its stationary point as noted in the previous section. 
maximum for  F using a subset of the c lass  of admissible functions for  V and W will 
be less than the maximum fo r  F using the entire c lass  of admissible functions. Thus, a 
lower l imit  fo r  the average velocity can be easily found by using any admissible function. 

AP 

This is a very important resul t  since the average velocity, 

The 

B A M P L E :  SQUARE CHANNEL WITH CONDUCTING WALLS 

Va r iat io na I Sol ut ion 

A square channel is shown in figure 2 using the dimensionless coordinates. The 
characterist ic length for  the channel L has  been chosen as one-half its height o r  width 
so that its inner corners  are located at (1, l), (1, -l), (-1, l), and (-1, -1). The normal- 
ized wall thickness t is the actual wall thickness divided by L. 

14 



-1 - 1 

l + t  

7 - 1 - t  

-X + t  

Figure 2. - Cross section of square channel with conduct- 
ing walls. 

Approximate solutions for  the velocity and electric potential will be obtained using 
the Ritz technique. In this  technique, the velocity and potential a r e  expressed in t e r m s  
of known functions of X and Y that approximate the t rue  solution but contain adjustable 
parameters  h l ,  . . . , An. The approximate solutions for V and W a r e  then substi- 
tuted into the expression for  F given by equation (8b) and the indicated integrations with 
respect to X and Y are performed. This leaves F as a function of the parameters  
X1, . . . , hn and the character is t ic  parameters  of the channel Po, y ,  M y  and Jo. A s -  
suming that V vanishes at X = *1 and Y = &1 for  all values of X1, . . . , An, the sta- 
tionary value of F can be found by maximizing F with respect to X1, . . . , An. The 

. . , hn when substituted into the approximate functions corresponding values for  X 

for V and W will yield the closest  approximations to the velocity and potential that are 
possible for  the c lass  of functions used. 

In o rde r  to determine the accuracy of the solutions obtained using the Ritz technique, 
a sequence of approximations is normally used. In this  method, a suitable, complete, in- 
finite set of functions is selected such as sine o r  cosine harmonics,  Bessel functions, 
etc. , so  that some l inear  combination of them is capable of representing the solution. 
For  the MHD channel flow problem these functions must be capable of representing any 
continuous function with a piecewise continuous derivative over the channel c ros s  section. 

The procedure consists of first obtaining an approximate solution using a l inear  com- 
bination of a finite number of these functions where the adjustable parameters  X, , . . . , 
An correspond to the coefficients of these functions. The problem is then repeatedly 
solved, each t ime increasing the number of functions used. 
f rom successive approximations, an estimate of the accuracy and convergence rate can be 
obtained. 

1’ - 

By comparing the resu l t s  

15 



In many problems, however, much is already known about the solution so  that the 
trial functions can be tailored to more  accurately approximate the solution thereby re- 
ducing the number of adjustable parameters  required. This  alternate procedure does not 
allow the e r r o r  in  the approximation to be easily estimated but it is much easier to u s e  
computationally since fewer adjustable parameters  are involved. This  alternate proce- 
dure  will be followed in this example. 

The solution for  the square channel will be determined fo r  Po = 1 and Jo = 0. Le t  
the trial functions for  V and W be given by 

0 5 x 5 1  

O l Y l l  
V(X,Y) = A1 (1 - Xol) (1 - Ya2) 

O 5 X i l + t  
+ C2Y82j (1 + c$3) O 5 Y i l + t  (1 5b) 

where A1, C1, C2, C3, al, a2, P , ,  p,, and p3 are adjustable parameters .  Because 
of the symmetry of the problem, it is only necessary to specify V and W in the first 
quadrant. Fo r  other quadrants, V and W can be found using the relations V(X,Y) = 

V(X, -Y) = V(-X,Y) and W(X,Y) = W(-X,Y) = -W(X, -Y). Since the admissible functions 
for  V and W must be continuous with piecewise continuous derivatives,  all exponents 
in equations (15a) and (15b) must be 1 o r  greater .  

useful in solving MHD channel flow problems of this  type since the velocity profile, for  
example, can go from a parabolic (a1 = a2 = 2) to nearly slug flow ( a  
merely varying two parameters .  

Substituting equations (15a) and (15b) into the expression for  F given by equa- 
tion (8b) yields after performing the integrations 

Tr ia l  functions of the form given by equations (15a) and (15b) have proven to be very 

a2 l a rge)  by 1' 

where 
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Figure 3. - Variational solution for average dimensionless velocity in square channel. 
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In obtaining equation (16), the "thin wall" approximation t << 1 w a s  made so that 
the resu l t s  a r e  directly comparable with published values. 
have to be made in order  to use  this  formulation but was  done since only thin wal l  resul ts  
are available for  comparison. 

found using a computer. 
and Po = 1, the proportionality constant between the average dimensionless fluid veloc- 
ity v and Fst is 1/4 (see eq. (14)). Values for  7 as a function of the Hartmann num- 
ber M are shown in figure 3 fo r  various values of conduction parameter  yt. 

The resul ts  show that the average fluid velocity decreases  as M and y t  increase.  
This decrease can be  explained as follows.: F o r  M f 0, an electric current is induced in 
the fluid due to the fluid motion. If yt = 0, the wall is an insulator and, hence, any in- 
duced current  must form a closed path entirely in the fluid. Thus, the total electromag- 
netic force on the fluid is zero.  However, since the electromagnetic force is not iden- 
tically zero everywhere, the velocity profile of the fluid is distorted which, in turn,  in- 
c r eases  the viscous force and consequently reduces the average fluid velocity. 
yt  # 0, the induced current  path is located partially in the wall so that there  is a net elec- 
tromagnetic force in  addition to the viscous force acting to reduce the fluid velocity. 

This approximation did not 

The maximum value for  F and the corresponding values for  the parameters  were  
Since the normalized cross-sectional a r e a  of the channel is 4 

For  

Comparison of Results 

The variational solution can be compared with other solutions for  some limiting 
cases .  
0.1403, independent of yt ,  as compared with the exact value of 0.1406, which c2" be 
computed using Four ie r  expansion techniques. 

F o r  M = 0, the average dimensionless velocity f rom the variational solution is 
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The exact solution for  the average flow in a rectangular channel with insulated walls 
(yt = 0) and perfectly conducting walls (yt = m) has  been obtained by Shercliff (ref. 3) and 
Chang and Lundgren (ref. 5), respectively. Each of these solutions is in the form of a 
series which converges poorly fo r  la rge  M. Williams (ref. 6),  however, transformed 
these solutions and obtained asymptotic fo rms  fo r  the average velocity for  l a rge  M. 
These solutions, simplified for  Po = 1 and the square channel, are as follows: 

looF 
i- 

Solution 

Variational 
- _  - - Will iams' for = 0 

Will iams' for yt = m 

Conduction 
parameter, 

ut 

Figure 4. - Comparison of variational solution wi th Will iams (ref. 6) asymptotic solutions for average 
dimensionless velocity. 
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A comparison between the variational solutions and these asymptotic fo rms  is shown 
in figure 4. The agreement between the two solutions fo r  y t  = 0 is excellent for  M 2 10. 
The variational solution f o r  yt  = 10 is always slightly less than the asymptotic form for  
y t  = 03. The difference, however, decreases  to less than 0.1. percent at M = 1000. 

finite conductivity has  recently been obtained by Chu (ref. 7). A comparison of his  solu- 
tion with the variational solution is shown in figure 5. The agreement between these two 
solutions is also quite good. A s  shown, the variational solution for  the average velocity 
is always slightly less than the series solution value. This is due to the fact that the 
computed maximum for F, and, hence, the average velocity, is always less than o r  equal 
to the t rue  maximum for  F since the trial functions used are a subset of the entire class 
of admissible functions . 

4 

A Four ie r  expansion type solution fo r  the rectangular channel with thin walls of 

Solution Conduction parameter, 

- Variational 

Hartmann number, M 

Figure 5. - Comparison of variational solution w i th  Chu's 
(ref. 7) solut ion for average dimensionless velocity. 
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CON CLU D I N G REMARKS 

A variational formulation was  presented f o r  a c lass  of MHD channel flow problems. 
A stationary expression was  developed that yielded solutions f o r  the fluid velocity and the 
induced electr ic  potential in a generalized channel. An example of a square channel with 
conducting walls was  solved as an  illustration. Very good agreement was  obtained be- 
tween the variational solution fo r  the average velocity in the square channel and other 
published values. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 24, 1969, 
120-2 7. 

22  



APPENDIX - SYMBOLS 

B 

Bi 

BO 

4 

J 

Ja 

JO 

L 

M 

matr ix  (see eq. (16)) 

adjustable par  am et e r 

i j th  element of matr ix  [A] 

unit vectors  in x- and 
y-directions 

magnetic flux density 

induced magnetic flux 
density 

uniform applied magnetic 
flux density 

contours in generalized 
channel c r o s s  section 
(see fig. 1) 

adjustable parameters  

matr ix  (see eq. (16)) 

element of matr ix  [D] 

electric field intensity 

stationary functional 
(see eq. (8b)) 

stationary value of F 

integrals (see eqs. 
( 7 4  to (7g)) 

electric current  density 

applied or  generated elec- 
t r i c  current  density 

dimensionless applied o r  
generated electric cur- 
rent  density 

characterist ic length of 
channel 

Hartmann number 

unit normal vector to con- 
tours  

order  of 

power delivered to ex- 
ternal load pe r  unit 
length of channel 

dimension1 e s s  pressure  

power supplied to fiuid by 
pressure  gradient pe r  
unit length of channel 

power dissipated by vis- 

gradient 

cous force per  unit length 
of channel 

power dissipated by surface 
viscous force pe r  unit 
length of channel 

power dissipated by volume 
viscous force per  unit 
length of channel 

power dissipated by ohmic 
l o s s  in fluid p e r  unit 
length of channel 

power dissipated by ohmic 
l o s s  in wa l l s  per  unit 
length of channel 

pressure  

sur faces  in generalized 
channel c ros s  section 
(see fig. 1) 

dimensionless wall thick- 
nes s  of square channel 
(see fig. 2)  
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U 

V 

- 
V 

V 

vO 

vZ 

w 

electr ic  potential 

dimensionless fluid 
velocity 

average dimensionless 
fluid velocity 

fluid velocity 

char  a c te ri sti c v elo city 

z-component of V 

dimension1 ess PO tential 

dimensionless coordinates 

rectangular coordinates 

adjustable parameters  

adjustable parameters  

variational operator 

I-10 

P 

( T o  
f 7  w 

Y 

w i  

I I  
f w  

Superscript: 

T 

fluid viscosity 

generalized adjustable 
parameters  

magnetic permeability of 
free space 

fluid density 

fluid and conducting wall 
el e c t ri cal conductivities 

aw/'f 
matrix (see eq. (16)) 

evaluation of quantity on 
fluid o r  wall s ide of 
contour 

transpose of matr ix  
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